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The Eras of Programming Semantics
First Era: Natural language definitions

• Flexible but (often) inprecise (FORTRAN, LISP, Algol, ...)

Second Era: Denotational Semantics (+ logic/algebraic approaches)

• Precise but hard to adapt to some features (typically concurrency)

Third Era: Structural Operational Semantics

• Free lunch! Precise and flexible (ML, Java, CSP, π-Calculus, type systems, ...)

Fourth Era: Quantitative Semantics

• New families of languages being developed for 

• modeling of natural systems

• compilation and execution of physical systems

• (specification of engineering systems: not in this talk)

• Denotational/Mathematical/Logical approaches: deep, in progress

• Operational Approaches: fairly successful so far, but no longer a free lunch



Quantitative Languages include
Process algebras (and automata theories) for performance evaluation

• Initial inspiration and still growing application area

• The typical model here is discrete-time Markov chains (transition probabilities) 
and hybrid models with continuous time

Process algebras for Systems Biology

• Stochastic π-Calculus, (Bio)PEPA, ...

• The semantic model here is typically continuous-time Markov chains (transition 
rates): we want to know how fast the system runs. E.g. to relate to chemical kinetics

Process algebras for Synthetic Biology

• DNA Computing, gene assembly, ...

• Chemistry as an executable programming language



Applications in

Systems Biology



Machine
Membrane Protein

Machine

Gene
Machine

H.Lodish & al. Molecular Cell Biology 4th ed.

Abstract Machines of Biochemistry

Regulation

Metabolism, Propulsion
Signaling, Transport

Confinement, Storage
Bulk Transport

Enact fusion, fission

Hold receptors,
host reactions

Nucleotides

Aminoacids Phospholipids

Glycan
Machine

Sugars

Surface and 
Extracellular Features



Systems Biology (Networks)

Nucleotides

Aminoacids Phospholipids

Gene
Machine

Protein
Machine Machine

Membrane 

Biochemical 
Networks

Transport 
Networks

Gene Regulatory 
Networks



Biological Modeling (Languages)
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Inaccessible

The Informal Model of Protein Interaction

Protein

On/Off switches

Binding Sites
Inaccessible

Switching accessible switches
- Depending on current state
- May cause other switches and 
binding sites to become (in)accessible.

Binding accessible sites
- Depending on current state
- May cause other switches and 
binding sites to become (in)accessible.

cf. BioCalculus [Kitano&Nagasaki], κ-calculus [Danos&Laneve]



Coding regionCoding region

ExcitationExcitation
Transcription

InhibitionInhibition

Regulatory region
GeneGene

Regulation of a gene influences 
transcription. The regulatory 
region has precise DNA 
sequences meant for binding 
regulators.

Transcription produces 
molecules (RNA or, through 
RNA, proteins) that bind to 
regulatory region of other genes 
(or that are end-products).

Input Output

Input
Output1Output2

The Informal Model of Gene Interaction



Molecular transport and 
transformation through 
dynamic compartment 
fusion and fission.

Fusion

FissionFission

Taken from  MCB CD

Voet, Voet & Pratt
Fundamentals of Biochemistry
Wiley 1999. Ch10 Fig 10-22.

The Informal Model of Membrane Interaction



Biological Modelling Today

Describe individual reactions



Biological Modelling Today

Add reactions for each new protein. 

Leading to...



Biological Modelling Tomorrow

Traditional approach: 

model the reactions

Stochastic Process Algebra: 

model the components

13
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Problem: Molecules with State

• Combinatorial explosion of species, reactions, and their state 

space.



20Lu

Problem: Connected Molecules

• Further combinatorial explosion



20Lu

Problem: Polymers

• ‘Infinite’ explosion



20Lu

Solution: ππππ-Calculus (or something comparable)

• A solution to combinatorial explosion
– π-calculus does not have those problems, at least not 

when you are writing a model. 

– Models are more compact quadratically (for chemical 

reaction networks) or exponentially (for protein networks) or 

infinitely (for polymerization).

– The combinatorial explosion still happens at execution 

(simulation time), but can be handled ‘on demand’.

– The state space is explored incrementally, and even if the 

state space is actually infinite (as with polymers) we can 

still simulate it with standard techniques, and (perhaps) 

analyze it.



20Lu

ππππ-Calculus for (Bio)Chemistry
(stochastic ππππ-calculus with mass-action interaction law)

• To represent soups P we need:
– Stochastic channels: (ν xr) P r is the rate of an exponential distribution: 

the rate of communication on that channel

– Composition: P | P (with identity elem. 0)

– Recursion: *P (equal to P | *P)

• To represent species we need:
– Collision: ?xr; P (with no input variables)

– Co-collision: !xr; P (with no output messages)

– Delay: τr; P ( = (ν xr) ?xr;P|!xr;0 for any x not in P) 

– Choice: P ⊕ P (with identity elem. 0)



20Lu

How (any small) Process Algebra Helps: 
Abstracting Interfaces in Catalysis

• Two reactions, same catalyst C
– The catalyst uses one channel for each reaction it catalyzes

– Modularizing: the catalyst has its own catalysis channel c, used for all 
the reactions it catalyzes:

a:   A + C →r C + B

b:   D + C →r C + E

C = !ar; C ⊕ !br; C

A = ?ar; B

D = ?br; E

C = !cr; C 

A = ?cr; B

D = ?cr; E

(nothing comparable)



20Lu

How (full) ππππ-Calculus helps: 
Representing Complexation

A + B   s↔r A:B 
There is no good notation for this reaction in chemistry: A:B is considered as a separate 
species (which leads to combinatorial explosion of models).

But there is a way to write this precisely in π-calculus. There is a single public association
channel ar at rate r, and many private dissociations channels ds at rate s, one for each 
complexation event (created by ν):

Afree = (ν ds) !ar(ds); Abound(ds)
Abound(ds) = !ds; Afree

Bfree = ?ar(ds); Bbound(ds)
Bbound(ds) = ?ds; Bfree

More compactly:

A = (ν ds) !ar(ds); !ds; A
B = ?ar(ds); ?ds; B 

Note that we are describing A independently of B: as in the 
catalysis example, A could form complexes with many 
different species over the ar channel.



20Lu

• Polymerization is iterated complexation
– It can be represente in π-calculus finitely, 

with one process (definition) for each monomer.

– Note that polymerization cannot be described finitely in chemistry (or 
ODEs) because there it needs one reaction for each length of polymer.

– The reason it works in π-calculus is because of the ν operator. It 
enables the finite representation of systems of potentially unbounded 
complexity. 

– Like in the genome: the structure of each monomer is coded in a finite 
description, and yet unbounded-length polymers happen. Otherwise, 
there would be no space in the genome to code all those reactions!

How ππππ-Calculus helps (infinitely): 
Representing Polymerization



Recent Progress: 
A Host of New Molecular Process Algebras

• Activities have since moved away from classical “raw” process algebras, for more 
domain-specificity

– Reaction-Based  (A + B  → C + D)  (Chemistry)
• Limited to finite set of species (no polymerization)

• Practically limited to small number of species (no run-away complexation)

– Interaction-Based (A  =  !c. B)  (Specialized Process Algebra)
• Reduces combinatorial complexity of models by combining independent submodels connected by 

interactions.

– Rule-Based (A{-}:B{p}  → A{p}:B{-})  (Logic, Graph Rewriting)
• Further reduces model complexity by describing molecular state, and by allowing one to ‘ignore the 

context’: a rule is a reaction in an unspecified (complexation/phosphorylatio) context.

• Similar to informal descriptions of biochemical events (“narratives”).

– Formal connections
• The latter two can be translated (to each other and) to the first, but doing so may introduce an 

infinite, or anyway extremely large, number of species.

• But these are still process algebras (interaction/composition based) with all the basic 
semantic requirements of classical process algebras, and in addition quantitative 
requirements, and requirement of flexible high-level modeling in certain domains.



Applications in

Synthetic Biology



Designing DNA Hardware: computers inside cells

DNA Strand Displacement (DSD)

directive sample 200000.0 2000
directive plot <y1l t^ y1 x^>; <y2 t^ y2r>
directive leak 1.0E-10 (*1.0E-12*)

def Scale = 1
def Excess = 1000
def bind = 0.00001
def unbind = 0.1

new x@ bind,unbind
new t@ bind,unbind

def SpeciesL(N,al,a) = N * Scale * <al t^ a x^>
def SpeciesR(N,a,ar) = N * Scale * <a t^ ar>
def BinaryLRxRR(N,al,a,b,br,c,cr,d,dr) = 
new i
( constant N * Scale * t^:[a x^ b]<i t^ cr t^ dr>:t^
| constant N * Excess * x^:[b i]:<c>[t^ cr]:<d>[t^ dr]
)

def UnaryLxLL(N,al,a,cl,c,dl,d) =
new i
( constant N * Scale * t^:[a x^]<i cl t^ dl t^>
| constant N * Excess * x^:[i]:[cl t^]<c x^>:[dl t^]<d x^>
)

def UnaryRx(N,a,ar) =
constant N * Scale * [a]:t^

( UnaryLxLL(1000,y1l,y1,y1l,y1,y1l,y1) 
| BinaryLRxRR(30000,y1l,y1,y2,y2r,y2,y2r,y2,y2r)
| UnaryRx(1000,y2,y2r)
| SpeciesL(1000,y1l,y1) 
| SpeciesR(1000,y2,y2r)
)

Step 1: Program circuit design Step 2: Compile circuit behaviour

Phillips & Cardelli. Royal Society Interface, 2009
Based on experiments by Zhang et al. 2007

Step 5: Insert DNA into cells

Step 3: Simulate circuit

Step 4: Compile program to DNA 



Formal Syntax and Stochastic Semantics



Generating the associated chemical reaction network for simulation 

def Species(N,x) = 
N*<t^ x> 

Input X

Output Y

X→→→→Y transducer 

Based on the semantics: 

Stochastic or Deterministic Simulation



Generating the associated CTMC

PRISM results for sequential transducers

Based on the semantics: 

Stochastic Modelchecking



Checking invariants in Z3

In progress ... (Biological Computation group & Constraint Reasoning group, MSRC)

We have integrated the Z3 theorem prover in our software to debug the circuit 
designs. Properties we have checked include whether circuits perform garbage-
collection of DNA strands, which would otherwise interfere with the functioning 
of the circuit, and whether a well-formed terminal state is always reached. When 
a design error is detected, Z3 generates a counter example showing a path 
leading to the error. 

Based on the semantics: 

Theorem Proving



A More Abstract View

• The semantics of DSD systems is very detailed, and talks about the 
physical structure of the components, so I will not present it here.

• But basically:

– There are signals (single DNA strands)

– There are gates that transduce signals (double DNA strands)

– There are populations of those (consumed during computation)



Strand Algebra

P   ::=   x  ⋮ [x1,..,xn].[y1,..,ym]  ⋮ 0  ⋮ P|P  ⋮ P*          n≥1, m≥0

x is a signal
[x1,..,xn].[y1,..,ym] is a gate
0 is an inert solution
P|P is parallel composition of signals and gates
P* is a population (multiset) of signals and gates

Reaction Rule

Equivalent to place-transition Petri Nets.
(Stochastic ones if adding rates) 

x1 | .. | xn | [x1,..,xn].[y1,..,ym]  → y1 | .. | ym

n x m gates



Representing Petri Nets

Transitions as Gates
Place markings as Signals 



Representing Boolean Networks

This encoding is compositional, and can encode any Boolean network:
- multi-stage networks can be assembled (combinatorial logic)
- network loops are allowed (sequential logic)



Representing Chemistry

Translate reaction by reaction, and put everything in parallel with the initial 
molecules. (In a stochastic version, one must turn P* into a k-weighted P=k).

Chemistry Strand Algebra

A + B  → C1 + … + Cn ([A,B].[C1, … ,Cn])*

A  → C1 + … + Cn (A.[C1, … ,Cn])*

A1 + … + An A1 | … | An
Initial solution

D. Soloveichik, G. Seelig, E. Winfree, "DNA as a Universal Substrate for Chemical Kinetics". 
PNAS 107 (12): 5393-5398, 2010

Almost trivial at this level, but by doing so, 
we transform chemistry into an executable programming language!



Compiling Strand Algebra to DNA

• compile(x) = 

• compile([x1,..,xn].[y1,..,ym]) =

• compile(0) =   empty solution

• compile(P | P’) =  mix(compile(P), compile(P’))

• compile(P*) =  population(compile(P))

P   ::=   x  ⋮ [x1,..,xn].[y1,..,ym]  ⋮ 0  ⋮ P|P  ⋮ P*          n≥1, m≥0



A Consensus Algorithm (Approximate Majority)

X (Majority)

X + Y → 2B
X + B → 2X
Y + B → 2Y

X (Totality)

Chen, Dalchau, Soloveichik, Phillips, Cardelli, Seelig

Y (Minority)
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“Executable Chemical Algorithms”

Chemical Program => Strand Algebra => DSD structure => (real) DNA



Approximate Majority experiments 
(Seelig Lab, U.W.)
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Correctness of Compilation

• The spec of a transducer: 

x.y | x → y

– Is it true at all?

– Is it true possibly, necessarily, or probabilistically ?

– Is it true in the context of a 
population of identical transducers?

– Is it true in all possible contexts?

– Is it true (only) for infinite populations?



Stochastic 

Operational 

Semantics



Process Algebras in the Wet Lab
• Common to Systems and Syntetic Biology applications:

– Need to describe real-time evolution of complex systems

• both stochastic and deterministic

– Need to relate our models to standard ones from the literature: 

• chemical reaction networks

• ordinary differential equations (deterministic)

• chemical master equations (stochastic)

– Need to verify quantitiative properties

• In experimental design (correctness)

• In experimental validation (parameter inference)

– Need to relate process algebras to “chemical semantics”:
stochastic and deterministic kinetics



The Fouth Era: Quantitative Semantics

In Computer Science we now have only a few mainstream programming languages

• (Fortunately still a wealth of specification languages...)

But in Computationa Biology, complex networks are represented by a variety of

• modelling languages for systems biology

• programming languages for synthetic biology

• both areas are vast in scope and requirements, and in their infancy

• leading to an explosion in new laguages and creativity

So an old problem resurfaces: how to give precise and flexible meaning to all these (now 
stochastic) languages? Our approach:

• start with a warm-up exercise: no-value-passing no-recursion CCS [QEST’10]

• proceed directly to the “worst case scenario”: π-calculus [ICTAC’13]

• Based on much prior work in theory of Markov processes, measure theory, automata 
theory, performance evaluation, and process algebra



Stochastic Process Algebras
• The Labeled Transition Systems of standard SOS 

are replaced by (labelled) Markov processes (e.g., CTMCs)

– nondeterministic a-transition: 

P Q

– stochastic (Markovian) a-transition:

P Q

r∈[0,+∞) is the rate of an exponentially distributed random variable that 

characterises the a-transitions from P to Q.

• In recent decades a plethora of SPAs appeared, such as

– TIPP (Gotz, Herzog, Rettelbach)

– PEPA (Hillston)

– EMPA (Bernardo, Gorrieri)

– Stochastic pi-calculus (Priami, Degano)

– StoKlaim (De Nicola, Katoen, Latella, Loreti, Massink)

etc.

a

a,r



The challenge of stochastic processes
• “Pointwise” semantics, similar to nondeterministic PAs, faces counting problems, and the 

known SPAs solve them using rather complex solutions such as the multi-transition system
(PEPA) or the proved SOS (stochastic pi-calculus).

Problems Arise:
(B. Klin, V. Sassone, Structural Operational Semantics for Stochastic Process Calculi, 
FOSSACS’08)

• These SOS formalisms are difficult to extend to a general format for well-behaved stochastic 
specifications;  

• In stochastic π-calculus (with proved SOS) parallel composition is not associative up to 
bisimulation;

• In PEPA, if arbitrary relations between transition rates and the rates of subprocesses are 
allowed, stochastic bisimulation is not a congruence;

A possible explanation (ibid.): in a well-behaved SOS framework the labels of transitions should 
only carry as much data as required for the derivation of the intended semantics;

Both the proofs and the transition multiplicities contain superfluous data.   



The challenge of stochastic processes
A solution: return to the simplicity and elegance of nondeterministic PAs:

instead the pointiwise semantics, use a semantics based on measures.

P          Q =>        P           μ,      μ(a)({Q})=r

where μ is a measure (indexed by actions) on the measurable space of processes.

Similar approaches

R. Segala, N. Lynch, Probabilistic Simulations for Probabilistic processes, 1995.

M. Kwiatkowska, G. Norman, R. Segala, J. Sproston, Automatic Verification of Real-Time 
Systems with Discrete Probability Distributions, 1999.

E. P. de Vink, J. Rutten, Bisimulation for probabilistic transition systems: A coalgebraic
approach, 1999.

J. Rutten, Universal Coalgebra: a theory of systems, 2000. 

F. Bartels, On Generalised Coinduction and Probabilistic Specification Formats, 2004.  

M. Bravetti, H. Hermanns, J.-P. Katoen, YMCA: Why Markov Chain Algebra?, 2006.

B. Klin, V. Sassone, Structural Operational Semantics for Stochastic Process Calculi, 2008.

R. De Nicola, D. Latella, M. Loreti, M. Massink, Rate-based Transition Systems for Stochastic 
Process Calculi, 2009.

a,r



Solving The Counting Problem
• We expect no difference in the behavior of, e.g.,  Q|R,  R|Q,  R|Q|0, etc. These trivial 

equivalences, reflected in the rules of structural congruence, embody the assumption 
of “well mixed chemical solutions”: namely that the probability of interaction is 
independent of the initial location (physically, or here syntactically) of the 
components.

• Our approach: Use structural congruence to organizes a measurable space of 
processes; instead of 2P (every syntactic form is measurable) we use the sigma 
algebra ∏ generated by P≡: only congruence-closed classes are measurable.

• Transitions relates an (initial) process to a (final) measurable set: a congruence-
closed set of processes. This way if P performs an action P          (Q|R)≡ we can also 
derive P          (R|Q)≡ without overcounting the rates of the transitions.

• The alternative is to consider any set of processes as measurable. Then the rate of 
an a-transition from P to the set {Q|R, R|Q, R|(Q|0))} obtains the undesired result 
P          {Q|R, R|Q, R|(Q|0)}.

• To avoid such problems, in the literature we find complicated variants of SOS that 
make the theory heavy and often problematic.

a,r
a,r

a,3r



Stochastic CCS: The syntax
Let A be a denumerable set of action names endowed with 

– an involution  *:A        A, a*≠a, a**=a 

– a weight function  ⍳:A       ℚ+, ⍳(a)= ⍳(a*) for all a∈A    (rate of a)

Let   Շ∉ A and  A+=A ∪ {Շ}

The set P of processes are defined by the following grammar, for arbitrary r∈ℚ+.

P:=  0  |  ε.P  |  P|P  |  P+P 

ε:=  a∈A | Շ(r) 

We extend the weight function ⍳ by ⍳(Շ(r))=r.

Structural Congruence “≡” is the smallest equivalence relation on P that satisfies

I. 1. P|Q ≡ Q|P; 2. (P|Q)|R ≡ P|(Q|R); 3. P|0 ≡ P.

II. 1. P+Q ≡ Q+P; 2. (P+Q)+R ≡ P+(Q+R); 3. P+0 ≡ P.

III. if P ≡ Q, then for any ε and any R∈P,

1. P|R ≡ Q|R; 2. P+R ≡ Q+R; 3. ε.P ≡ ε.Q.



The measurable space
For arbitrary P∈P, let P≡ be the ≡-equivalence class of P and P≡ the set of ≡-equivalence 

classes of processes. 

Let ∏ be the sigma-algebra generated by P≡ over P.
(∏ is a set of subsets of P: the closure of P≡ under complement and countable union, 
and contains P)

(P,∏) is a measurable space. (A set with a sigma-algebra over it.)

The measurable sets are the members of ∏. 

Let Δ(P,∏) denote the set of measurable functions on (P,∏).

(functions f: ∏ ℚ+ such that f(∅) = 0, and f over a union of sets with pairwise 

disjoint elements is the sum of the f’s of the sets) 
The null measure is ω(S )=0, for any S ∈∏.

For S,T ∈ ∏, let S |T =    U     (P|Q)≡ and    ST  =        U     R≡

Lemma: If S ,T ∈ ∏ and P∈P, then S |T and ST are measurable sets.

P∈S, Q∈T P|R∈S, P∈T



Structural Operational Semantics
Has the form:

P         μ,

Where, μ gives for any action x and for any measurable set S ∈ ∏ (closed under structural 

congruence) the overall transition rate from P through x to (some element of) S.

where   μ: A+ Δ(P,∏)   is such that

for each x∈ A+,    μ(x)∈ Δ(P,∏)  is a measure and

for each S ∈ ∏,    μ(x)(S )=r∈ℚ+ , 

r is the rate of the x-transition from P to (elements of) S .

Notice that S is not just any set, but a measurable set, e.g. μ(x)({Q}) is undefined.

In simple cases, we can still write, pointwise:

P         Q for      P         μ with    μ(x)(Q≡) = r
x,r



Structural Operational Semantics

Lemma: For any P ∈ P, there exists a unique μ ∈ Δ(P,∏) A+
such that  P        μ.

Notice that we have no rule that guarantees that structural congruent processes have 
identical behaviour. But we can prove this.

Theorem: If  P ≡ Q  and   P        μ , then  Q μ.

0         ϖ
(Null) 

P         μ Q         μ’  

P+Q         μ ⊕ μ’         
(Sum) 

P         μ Q         μ’  

P|Q         μ P
≡⊗Q

≡ μ’         
(Par) 

ε.P         
(Guard) [  ]ε

P≡

(μ ⊕ μ’)(x)(S )= μ(x)(S ) + μ’(x)(S )

(a)= D(⍳(ε),P≡),    a=ε

ω,               a≠ε
[  ]ε

P≡

... the tricky one ...

ϖ(x)=ω for any x ∈A+,          



Structural Operational Semantics

For any P,Q ∈∏, let    P⊗Q : Δ(P,∏) A+ ╳ Δ(P,∏) A+
Δ(P,∏) A+

such that for any μ,μ’∈ Δ(P,∏) A+
, any S ∈ ∏,

for atomic actions a∈A: 

the sum of the two measures “acting independently” through a on parts of S.

(μ P⊗Q μ’)(a)(S )= μ(a)(SQ ) + μ’(a)(SP )

for Շ:

again the sum of the two measures “acting independently” through Շ on parts of S
plus the Շ resulting from interactions of complementary actions a for all possible 
parallel decompositions of S.

Here is where the law of mass action is embodied: in the case of interaction we take 
the product of the rates of the interacting populations. (This leads to multiply  
⍳(a)╳⍳(a*) and to further count them twice because of symmetry of |,  so we divide 
again by 2⍳(a) to get the proper overall rate for Շ.)

The parallel composition “|”

(μ P⊗Q μ’)(Շ)(S )= μ(Շ)(SQ ) + μ’(Շ)(SP ) + ∑
a∈A, ⍳(a)>0

T’ |T’’ =S

μ(a)(T’ ) ╳ μ’(a*)(T’’ )

2⍳(a)



The algebra of measures
We have defined an algebraic structure (Δ(P,∏) A+

, ϖ,       , ⊕, P⊗Q ) with operators 

defined for arbitrary ε, P and Q.

Lemma:

I. (1) μ ⊕ μ’ = μ’ ⊕ μ,

(2) (μ ⊕ μ’) ⊕ μ’’= μ ⊕ (μ’ ⊕ μ’’),      

(3) μ ⊕ ϖ =μ.

II.   (1) μ P⊗Q μ’ = μ’ Q⊗P μ,

(2) (μ P⊗Q μ’) P |Q⊗R μ’’= μ P⊗Q |R (μ’ Q⊗R μ’’),      

(3) μ P⊗0 ϖ =μ.

Theorem:

Stochastic bisimulation is a congruence, i.e.,

1. if  P ∽ P’,  then for arbitrary ε,  ε.P ∽ ε.P’ ;

2. if  P ∽ P’  and  Q ∽ Q’ ,  then  P+P’ ∽ Q+Q’ ;

3. if  P ∽ P’  and  Q ∽ Q’ ,  then  P|P’ ∽ Q|Q’ 

[  ]ε
P



Stochastic ππππ-Calculus Revisited

• In the same style of measure-based operational semantics:

– Add name restriction (ν a@r) P and name-passing input/output. 
This further complicates the operator for |, but also simplifies the 
treatment of bound output w.r.t. ordinary π-calculus: no need for 
higher-order abstraction-concretions here.

– Remove Շ because it is now definable.

– Add recursion !P. This can no longer be included in structural 
congruence because otherwise rates become infinite. It is instead 
handled through a (simple) rule. This is the main way stochastic π-
calculus deviates from the original π-calculus, which otherwise could be 
seen as stochastic-π with all the rates = 1.

• Paper in the proceedings.



Conclusions

• We took the challenge of reconsidering Stochastic Process Algebras from a foundational 
perspective, to facilitate the application of its basic princibles to new domains.

• The goals: 

– understanding if the “counting ” approaches can be avoided

– providing well-behaved SOS formats similar to the formats of nondeterministic PAs

• The way to do it: 

– center the work on the equational theory of structural congruence

– lift the algebraic structure from the space of processes to the space of measures

• Advantages:

– an elegant and compact SOS 

– well-behaved SOS: bisimulation is a congruence that extends structural congruence

– a simple extension to metric semantics

– simple solutions to the problems related to recursion and bound output


